Document Type

Article

Publication Title

Kairos: Rhetoric, Technology, and Pedagogy | Praxis Wiki

Abstract

Today social networks allow protests to develop using complex components and strategies; furthermore, new tools for digital analysis allow scholars to study patterns and connections in those social movements analyzing online protests and the complex rhetorical work and connections occurring within an online protest (Hayes, 2016). The tools and programs available to study social media in many ways make the process easier, in regards to the amount and type of data available. Nonetheless, this increase in available data presents challenges as data must be collected, sorted, selected, and analyzed. The options present many difficult choices as much of this is charting new territory, along with new methods.

When using digital methods, Richard Rogers (2013) advocates the understanding and usage of not only the digital devices, but how the digital objects created by these devices can assist in creating research questions. He asks how these digital objects such as hashtags, followers, tweets or locations can be juxtaposed and used as more than a means for finding information, but for using information. Using these digital objects does require tools, as Derek Hansen, Ben Shneiderman, & Marc A. Smith (2011) discuss the advantages of using social network analysis (SNA), “Social network analysis offers a systematic method to evaluate social media efforts, replacing anecdotes with scientifically based evidence” (p.8). Their discussion focuses on the governmental and business uses of SNA to determine the successes and failures of social media strategies, these same concepts can apply to understanding online protests or online social movements. Additionally, Jeremy Foote, Aaron Shaw & Benjamin Mako Hill (2017) explain the ability of network analysis to take large quantities of data to explore relationships and connections.

Twitter is showcased as an entity that provides digital objects to examine relationships and connections as well as the success of a hashtag campaign. Axel Bruns, Tim Highfield & Jean Burgess (2013) study two separate online protests during the Arab Spring in order to analyze the connections and language (Arabic and English) between the two campaigns using the hashtags #egypt and #libya. They discovered the use of Twitter was complex and while Twitter played a role in the quest for regime change, it was not the only method or tool used. Axel Bruns (2012) used SNA to examine conversations occurring on Twitter through analyzing the use of hashtags along with @replies and retweets. This analysis enabled the visualization of how participants participated, the roles they played, and how conversations evolved over time. Additionally, Axel Bruns, Jean Burgess, & Tim Highfield (2014) gathered multiple hashtags covering different Australian events to understand how Australians overall are using Twitter versus focusing on one event/one hashtag.

Online protests consisting of hashtag activism have focused on a multitude of issues ranging from economic, sexual assault, racial equality, police brutality, and social justice. Some examples include #BlackLivesMatter, #OccupyWallstreet, #BringBackOurGirls, and #MeToo, along with the recent #GetMePPE, which is a call to showcase the lack of Personal Protective Equipment that medical workers and first responders are encountering in their work against COVID-19.

Using digital tools to collect, display, and analyze data using social network analysis can assist in developing and answering research questions within these (and other) online social movements/protests to understand how participants create connections, construct knowledge, and share through their digital discourse and writing. This webtext will explain how social network analysis (SNA) and other data visualizations can assist digital humanists in researching and answering questions in analyzing big data related to protest movements through a case study of the SNA used in analyzing #MyNYPD.

html

Volume

25

Issue

2

Publication Date

Spring 2021

Keywords

data-visualization, big data, social networks

Disciplines

Communication | Data Science | Leadership Studies

ISSN

1521-2300

Upload File

wf_yes

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.